

## REF A02

# SEISMIC STRENGTHENING OF SCHOOL AT BOLOGNA, ITALY

| PROJECT        | SEISMIC<br>STRENGTHENING OF<br>A SCHOOL BUILDING |
|----------------|--------------------------------------------------|
| LOCATION       | Crevalcore, Bologna, Italy                       |
| CLIENT         | "Marco Polo" Junior high school                  |
| ENGINEER       | SG LAB, Italy                                    |
| IMPLEMENTATION | 2012                                             |



Applications

Slab strengthening (overlay) & addition of seismic infill walls

Design

EN 1992-1-1, EN 1998-1 & national regulations

Hardware

HIT-RE 500, Hilti SafeSet™ System, drill bits

Software

**PROFIS Engineering** 

Services

Hilti training to the design team

#### **CHALLENGES**

- Brownfield Project
- Building was severely damaged due to Earthquake
- Seismic strengthening of existing building
- > Stiffening of existing floors
- Addition of infill walls for lateral resistance

### **HILTI TOTAL SOLUTION**

- Optimized & qualified postinstalled solutions
- ✓ Seismic interventions introduced
- ✓ Eurocode and national regulations for design
- ✓ Post-installed rebar for slab overlay and end-anchorages



**LOAD / CONDITIONS:** Static and Seismic



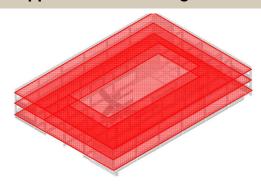


The intervention increased the seismic resistance of the building from 10% to 110%

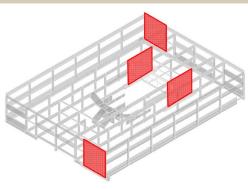


#### PROBLEM STATEMENT AND OBJECTIVES

The building was severely damaged during the 2012 Emilia Post-installed rebars with HIT-RE 500 were used for The seismic intervention increased the seismic Earthquake. The flexible, partially prefabricated structure was the overlay on the floors as well as the connection resistance of the building from 10% to 110% largely undamaged after the seismic event. However, non- with surrounding walls. structural components were seriously damaged. Therefore, it The connection of the shear infill walls with the school building according to latest codes & was decided to strengthen and stiffen the existing structure. existing reinforced concrete frames was decided to standards. The main seismic interventions consisted of stiffening the increase the lateral resistance of the building. floors and the addition of shear-infill walls.


#### **DESIGN APPROACH**

#### **SOLUTION AND FINAL OUTCOME**


compared to the requirement for a comparable new

Usage of mortar (Hilti HIT- RE 500) and installation tools (Hilti SafeSet System™, drill bits, etc.)

## **Application: Stiffening of floors**



Application: Addition of infill walls



Seismic interventions



Slab overlay and End-anchorages



Installation



